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hose who are able to
represent what they do not
krnow make better decisions”

- CS109



Finishing up Expectation



Conditional Expectation Functions

This is a number:

X

This is a function of rv Y:

EX]Y =y

E [ X L ] Doesn’t make sense. Take expectation of random
o variables, not events



Law of Total Expectation

For any random variable X and any
discrete random variable Y

E[X]=) E[X|Y =y]P(Y =y)

Yy




Analyzing Recursive Code

int Recurse () {
int x = randomInt(l, 3); // Equally likely values

if (x == 1) return 3;
else if (x == 2) return (5 + Recurse());
else return (7 + Recurse()):;

Let Y = value returned by rRecurse (). Whatis E[Y]?
E[Y]=E[Y | X =1]P(X =D)+E[Y | X =2]P(X =2)+ E[Y | X =3]P(X =3)
E[Y| X =1]=3
E[Y| X =2]=E[5+Y]=5+E[Y]

E[Y| X =3]=E[7T+Y]=T+E[Y]
E[Y]1=3(1/3)+(S+E[Y])A/3)+(T+E[Y])1/3)=(1/3)(15+2E[Y])
E[Y]=15




Today we are going to learn
something unintuitive, beautiful and
useful



Review



Conditioning with a
continuous random
variable is odd at first. But
then it gets fun.

Its like snorkeling...




Continuous Conditional Distributions

- Let X be continuous random variable
- Let E be an event:

P(X =z, E)
P(X =x)

 P(X =z|E)P(E)

B P(X = x)

_ fx(z|E)P(FE)e,

fx(z)e,
_ IxGIE)P(E)
fx(z)

P(E|X = 1) =




Continuous Conditional Distributions

- Let X be a measure of time to answer a question

- Let E be the event that the user is a human:

P(X =z, F)
P(X =x)
_ PX —ﬂffE)P( )
P(X =x)

fx(z|E)P (E)Eaz
fx(z)e,

fx(z|E)P(FE)
fx(x)

P(E|X = 1) =




Biometric Keystroke

+ Let X be a measure of time to answer a question
* Let E be the event that the user is a human
* What if you don’t know normalization term?:

Normal pdf
N
_ fx(z|E)P(E)
fx(z)
e 222

P(E|X = 1)

P(E|X = 1)
P(EC|X = z)




End Review



Lets play a game

Roll a dice twice. If either time you roll a 6, | win.
Otherwise you win.




Flip a Coin With Unknown Probability

Demo






We are going to think of
probabilities as random
variables!!!
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Flip a Coin With Unknown Probability

Flip a coin (n + m) times, comes up with n heads
« We don’t know probability X that coin comes up heads

Frequentist

, n
X = Ilim
n+m—oo 1 -+ M
n
n+m

X is a single value

Bayesian

fX|N(x‘n) —
P(N =n|X =) fx(x)

P(N =n)

X is a random variable



What is your belief that you
successfully roll a 6 on my die?



Flip a Coin With Unknown Probability

Flip a coin (n + m) times, comes up with n heads

» We don’t know probability X that coin comes up heads

= Our belief before flipping coins is that: X ~ Uni(0, 1)

» Let N = number of heads

« Given X = x, coin flips independent: (N | X)~Bin(n+m, x)
P(N =n|X =2x)fx(x)

fXN(%n) - P(N = n)
Bayesian Bayesian “prior”
"posterior” probability
probability distribution

distribution



Flip a Coin With Unknown Probability

Flip a coin (n + m) times, comes up with n heads

» We don’t know probability X that coin comes up heads

= Our belief before flipping coins is that: X ~ Uni(0, 1)

» Let N = number of heads

« Given X = x, coin flips independent: (N | X)~Bin(n+m, x)
lﬁ(N =n|X = x)‘fx(x)l 1

fxlN(iU\n)/: PN =)
Binomial B (”Zm)xng —x)m Ay
~ P(N =n) le fo,
0 IR T
= P(N:n)m (1 —2x)

1

1
=—-2"(1 —x)" where c = / " (1 —x)"dx
C 0



Flip a Coin With Unknown Probability

If you start with a X ~ Uni(0, 1) prior
over probability, and observe:

n “successes” and

m “failures”...

Your new belief about the probability is:

-




Belief after 7 “success” and 1 “fail”

1
R ¢ 1 — m

fx(x) T (1—x) s
_f\ m=1

_ n="17
o g
2.7+ // \
- / |

1.6

Probability Density

12~ \
0.8 .l

0.4 4

0.0 T T T =t T T T T T 1




Equivalently

If you start with a X ~ Uni(0, 1) prior
over probability, and observe:

let « = num “successes” + 1

let b = num “failures” + 1

Your new belief about the probability is:

fx(z) == 211 —-2z)"!

where




Beta Random Variable

- X is a Beta Random Variable: X ~ Beta(a, b)
« Probability Density Function (PDF):  (where a, b > 0)

1 .Xa_l(l—iX)b_l

f@)=1 50

1

0 1
ST where B(a,b) = jx“‘l (1-x)""dx

o —_ [} (5} E=
Il Il 1
T T

0 otherwise 0
.
T Beta28) Beta{,2)  ° 51
Beta(5,5) 4 Beta(0.2,0.8) Beta(0.8,0.2)
2 ~. Beta(1,2) 3l
m / |
1
Beta(2,1) 14 Beta(0.8,0.8)
S
0 t t
0 02 0.4 06 08 1

« Symmetricwhena=b>5

a Var(X) = 2“1’
a+b (a+b) (a+b+1)

. E[X]=



Meta Beta

T Beta28) Betai,2)  ° 1 51
1 Beta(0.8,0.2
Beta(5,5) 1l Betan.2,0.8) eta0.8,0.2)
2 4 Beta(1,2) 34
Beta(1,1) 2
1
Beta@ 1) 1 Beta(0.8,0.8)
S
0 t t + + 5 0 t t t t t
u} 02 04 0g 08 1 0 02 0.4 06 08 1

Used to represent a
distributed belief of a probability



Beta is a distribution for
probabilities
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Beta Parameters can
come from experiments:

a = “successes’” + 1
b = “failures” + 1




Back to flipping coins

Flip a coin (n + m) times, comes up with n heads

» We don’t know probability X that coin comes up heads
= Our belief before flipping coins is that: X ~ Uni(0, 1)
« Let N = number of heads

« Given X = x, coin flips independent: (N | X)~Bin(n+m, x)
P(N =n|X = z)fx(z)
P(N =n)

_ (") (1 — x)™

T

P(N =n)

_ ) m
_P(N:n)x (1 —2x)

1

1
=—-2"(1 —x)" where c = / " (1 —x)"dx
C 0

fX|N(iU\n) —




Understanding Beta

+ X|(N=n,M=m)~Beta@a=n+1,b=m+1)
= Prior X ~ Uni(0, 1)

= Check this out, boss: N successes

- Beta(@a=1,b=1)=? M failures
1 X 1=x) = 1
B(Cl,b) B(Cl,b)

1
T

x'(1-x)°

J(x)=

1=1 where O<x<l1

- Beta(a=1,b=1)=Uni(0, 1)

= So, prior X ~Beta(a=1,b=1)



If the Prior was a Beta...

X 1s our random variable for probability
If our prior belief about X was beta

f(X =12) = B(clz,b) 11— )t

What 1s our posterior belief about X after observing n heads
(and m tails)?

f(X =x|N =n) =777



If the Prior was a Beta...
P(N =n|X = 2)f(X = z)

f(X=z|[N=n) =

P(N =n)
_ (M) - o)™ (X = )
P(N =n)
B (n:m)a:”(l — x)m%x‘“l(l — )0t
P(N =n)
= K, - (n Zm) " (1 — x)mB(clz,, 3 xa’_l(l — x)b_l

= K3 -2"(1 —2)"2* (1 —x)"!

— K- xn—l—a—l(l . x)m—l—b—l

X|N ~ Beta(n 4+ a,m + )



Understanding Beta

= If “Prior” distribution of X (before seeing flips) is Beta
« Then “Posterior” distribution of X (after flips) is Beta

Beta is a conjugate distribution for Beta
« Prior and posterior parametric forms are the same!

« Practically, conjugate means easy update:
o Add number of “heads” and “tails” seen to Beta parameters




Further Understanding Beta

. Can set X ~ Beta(a, b) as prior to reflect how

biased you think coin is apriori
« This is a subjective probability!

= Prior probability for X based on seeing (a + b — 2)
“imaginary” trials, where

(a — 1) of them were heads.
(b — 1) of them were tails.
= Beta(1, 1) = Uni(0, 1) - we haven’t seen any
“imaginary trials”, so apriori know nothing about coin
Update to get posterior probability
« X | (n heads and m tails) ~ Beta(a + n, b + m)



-A ‘ PN e 1

Let X be the probability of rolling a “6”
on Chris’ die.

Prior: Imagine 5 die rolls where
only showed up as a “6”

Observation: Roll it a few times...

What is the updated probability density
function of X after our observations?




Check out Demo!

Parameters

Beta PDF
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Damn



Beta Example

Before being tested, a medicine is believed to “work™ about 80% of
the time. The medicine 1s tried on 20 patients. It “works” for 14 and
“doesn’t work™ for 6. What 1s your new belief that the drug works?

Frequentist:



Beta Example

Before being tested, a medicine is believed to “work™ about 80% of
the time. The medicine 1s tried on 20 patients. It “works” for 14 and
“doesn’t work™ for 6. What 1s your new belief that the drug works?

Bayesian: X ~ Beta

Prior: Interpretation:
X ~ Beta(a =81,b=21) 80 successes / 100 trials

X ~ Beta(a =9,b=3) 8 successes / 10 trials

X ~ Beta(a =5,b=2) 4 successes / 5 trials



Beta Example

Before being tested, a medicine is believed to “work™ about 80% of
the time. The medicine 1s tried on 20 patients. It “works” for 14 and
“doesn’t work™ for 6. What 1s your new belief that the drug works?

Probability Density

5.14

4.6

4.1+

3.54

3.04

2.54

2.04

1.54

1.04

0.5

0.0

Bayesian: X ~ Beta
Prior: X ~ Beta(a =5,b=2)

Posterior: X ~ Beta(a =54 14,b =2+ 6)

, ~ Beta(a, =19,b = 8)
Posterior
a 19
] ) E[X] = — ~ 0.70
X a-+b 19 + 8
R % V \ _a—1
7 19
g — ~ (.72

T T T T T T T T “
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
; 18+ 7



Next level?



Alpha GO mixed deep learning and
core reasoning under uncertainty



Multi Armed Bandit

MAX

- I = I - I A I 18 17 16 15 4 13 RTERMINAL




Multi Armed Bandit

Which one do you give to a patient?



Lets Play!

Which one do you give to a patient?



Lets Play!

pickle
random

} def main():
X190 pickle.load(open('probs.pkl', 'rb'))

print("welcome to the drug simulator. There are two drugs")

i rue.
choice - getChoice()
prob X1 choice "a" X2
success bernoulli(prob)
success:
print('Success. Patient lives!')

print('Failure. Patient dies!')
print("'')




Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.

If you had a uniform prior, what is your posterior belief about
the likelihood of success?

2 successes
3 failures

X ~ Beta(a = 3,0 =4)



Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.
X is the probability of success.

X ~ Beta(a =3,b=14)

What 1s expectation of X?




Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.
X is the probability of success.

X ~ Beta(a =3,b=14)

What 1s the probability that X > 0.6

P(X>06)=1—-P(X <0.6)=1- Fx(0.6)
Wait what? Chris are you holding out on me?

stats.beta.cdf (x, a, b)

P(X > 0.6) =1 — Fx(0.6) = 0.1792



Challenge for you

Send me your strategies sometime before Friday



Beta:
The probability density
for probabilities



Beta is a distribution for
probabilities
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Beta Distribution

If you start with a X ~ Uni(0, 1) prior
over probability, and observe:

let « = num “successes” + 1

let b = num “failures” + 1

Your new belief about the probability is:

fx(z) == 211 —-2z)"!

a—l(

where C 1l — x

|
o\
>,
=




Any parameter for a
“parameterized” random
variable can be thought of
as a random variable.

Eg: X ~ N(p,0%)




That’s all!



