

The Random Variable for Probabilities

Chris Piech CS109, Stanford University

"Those who are able to represent what they do not know make better decisions" - CS109

Finishing up Expectation

Conditional Expectation Functions

This is a number:

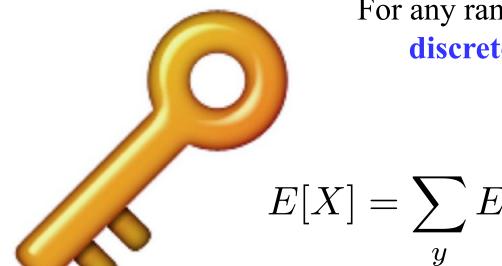
This is a function of rv Y:

$$E[X|Y=y]$$

E[X=5]

Doesn't make sense. Take expectation of random variables, not events

Law of Total Expectation



For any random variable *X* and any discrete random variable *Y*

$$E[X] = \sum_{y} E[X|Y = y]P(Y = y)$$

Analyzing Recursive Code

```
int Recurse() {
     int x = randomInt(1, 3); // Equally likely values
     if (x == 1) return 3;
     else if (x == 2) return (5 + Recurse());
     else return (7 + Recurse());

    Let Y = value returned by Recurse(). What is E[Y]?

E[Y] = E[Y | X = 1]P(X = 1) + E[Y | X = 2]P(X = 2) + E[Y | X = 3]P(X = 3)
                          E[Y | X = 1] = 3
                  E[Y | X = 2] = E[5 + Y] = 5 + E[Y]
                  E[Y | X = 3] = E[7 + Y] = 7 + E[Y]
   E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3) = (1/3)(15 + 2E[Y])
                             E[Y] = 15
```

Today we are going to learn something unintuitive, beautiful and useful

Review

Conditioning with a continuous random variable is odd at first. But then it gets fun.

Its like snorkeling...

Continuous Conditional Distributions

- Let X be continuous random variable
- Let E be an event:

$$P(E|X = x) = \frac{P(X = x, E)}{P(X = x)}$$

$$= \frac{P(X = x|E)P(E)}{P(X = x)}$$

$$= \frac{f_X(x|E)P(E)\epsilon_x}{f_X(x)\epsilon_x}$$

$$= \frac{f_X(x|E)P(E)}{f_X(x)}$$

Continuous Conditional Distributions

- Let X be a measure of time to answer a question
- Let E be the event that the user is a human:

$$P(E|X = x) = \frac{P(X = x, E)}{P(X = x)}$$

$$= \frac{P(X = x|E)P(E)}{P(X = x)}$$

$$= \frac{f_X(x|E)P(E)\epsilon_x}{f_X(x)\epsilon_x}$$

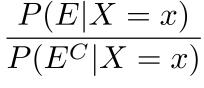
$$= \frac{f_X(x|E)P(E)}{f_X(x)}$$

Biometric Keystroke

- Let X be a measure of time to answer a question
- Let E be the event that the user is a human
- What if you don't know normalization term?:

Normal pdf
$$Prior$$

$$P(E|X=x) = \frac{f_X(x|E)P(E)}{f_X(x)}$$
 ????



End Review

Lets play a game

Roll a dice twice. If either time you roll a 6, I win.

Otherwise you win.



Demo

We are going to think of probabilities as random variables!!!

- Flip a coin (n + m) times, comes up with n heads
 - We don't know probability X that coin comes up heads

Frequentist

$$X = \lim_{n+m \to \infty} \frac{n}{n+m}$$

$$\approx \frac{n}{n+m}$$

X is a single value

Bayesian

$$f_{X|N}(x|n) = \frac{P(N = n|X = x)f_X(x)}{P(N = n)}$$

X is a random variable

What is your belief that you successfully roll a 6 on my die?

- Flip a coin (n + m) times, comes up with n heads
 - We don't know probability X that coin comes up heads
 - Our belief before flipping coins is that: X ~ Uni(0, 1)
 - Let N = number of heads

distribution

• Given X = x, coin flips independent: $(N \mid X) \sim Bin(n + m, x)$

$$f_{X|N}(x|n) = \frac{P(N=n|X=x)f_X(x)}{P(N=n)}$$
 Bayesian "prior" probability probability distribution

- Flip a coin (n + m) times, comes up with n heads
 - We don't know probability X that coin comes up heads
 - Our belief before flipping coins is that: X ~ Uni(0, 1)
 - Let N = number of heads
 - Given X = x, coin flips independent: $(N \mid X) \sim Bin(n + m, x)$

$$f_{X|N}(x|n) = P(N = n|X = x)f_X(x) 1$$

$$P(N = n)$$
Binomial
$$= \frac{\binom{n+m}{n}x^n(1-x)^m}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}}{P(N = n)}x^n(1-x)^m$$

$$= \frac{1}{c} \cdot x^n(1-x)^m \quad \text{where } c = \int_0^1 x^n(1-x)^m dx$$

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

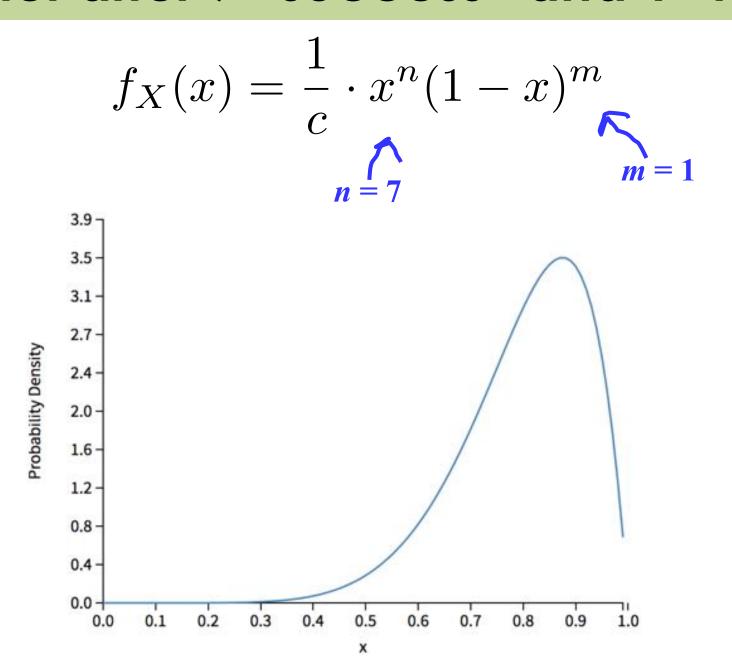
n "successes" and m "failures"...

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^n (1 - x)^m$$

where
$$c = \int_0^1 x^n (1-x)^m$$

Belief after 7 "success" and 1 "fail"



Equivalently

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

let a = num "successes" + 1

let b = num "failures" + 1

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}$$

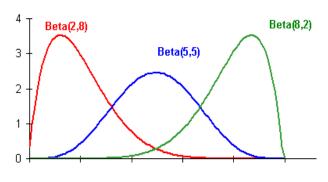
where
$$c = \int_0^1 x^{a-1} (1-x)^{b-1}$$

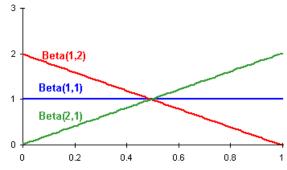
Beta Random Variable

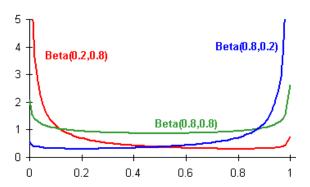
- X is a Beta Random Variable: X ~ Beta(a, b)
 - Probability Density Function (PDF): (where a, b > 0)

$$f(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} \\ 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases} \text{ where } B(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$





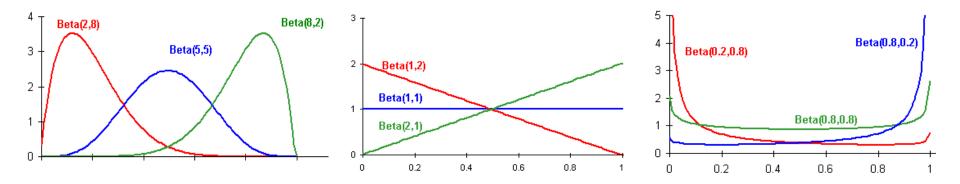


• Symmetric when a = b

•
$$E[X] = \frac{a}{a+b}$$

•
$$E[X] = \frac{a}{a+b}$$
 $Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$

Meta Beta



Used to represent a distributed belief of a probability

Beta is a distribution for probabilities

Beta Parameters *can* come from experiments:

$$a = \text{"successes"} + 1$$

$$b = \text{``failures''} + 1$$

Back to flipping coins

- Flip a coin (n + m) times, comes up with n heads
 - We don't know probability X that coin comes up heads
 - Our belief before flipping coins is that: X ~ Uni(0, 1)
 - Let N = number of heads
 - Given X = x, coin flips independent: $(N \mid X) \sim Bin(n + m, x)$

$$f_{X|N}(x|n) = \frac{P(N = n|X = x)f_X(x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}}{P(N = n)}x^n(1-x)^m$$

$$=\frac{1}{c} \cdot x^n (1-x)^m$$
 where $c = \int_0^1 x^n (1-x)^m dx$

Understanding Beta

- $X \mid (N = n, M = m) \sim Beta(a = n + 1, b = m + 1)$
 - Prior X ~ Uni(0, 1)
 - Check this out, boss:
 - $_{\circ}$ Beta(a = 1, b = 1) =?

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} = \frac{1}{B(a,b)} x^0 (1-x)^0$$
$$= \frac{1}{\int_0^1 1 \, dx} 1 = 1 \quad \text{where} \quad 0 < x < 1$$

So, prior X ~ Beta(a = 1, b = 1)

N successes

M failures

If the Prior was a Beta...

X is our random variable for probability If our **prior belief** about X was beta

$$f(X = x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

What is our **posterior belief** about X after observing *n* heads (and *m* tails)?

$$f(X = x | N = n) = ???$$

If the Prior was a Beta...

$$f(X = x|N = n) = \frac{P(N = n|X = x)f(X = x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m f(X = x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{P(N = n)}$$

$$= K_1 \cdot \binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$$

$$= K_3 \cdot x^n(1-x)^m x^{a-1}(1-x)^{b-1}$$

$$= K_3 \cdot x^{n+a-1}(1-x)^{m+b-1}$$

 $X|N \sim \text{Beta}(n+a,m+b)$

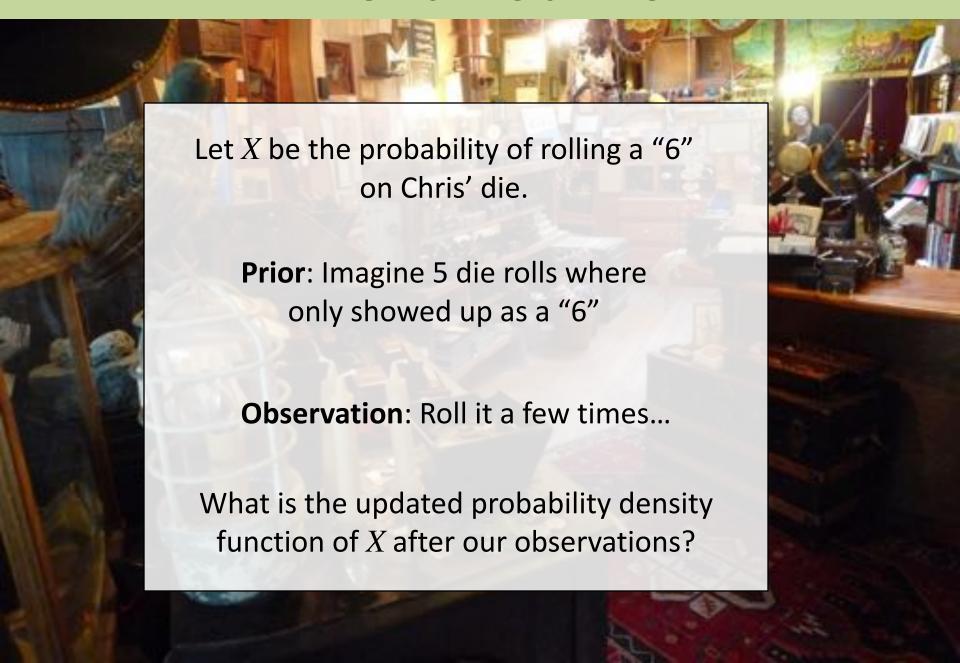
Understanding Beta

- If "Prior" distribution of X (before seeing flips) is Beta
- Then "Posterior" distribution of X (after flips) is Beta
- Beta is a <u>conjugate</u> distribution for Beta
 - Prior and posterior parametric forms are the same!
 - Practically, conjugate means easy update:
 - Add number of "heads" and "tails" seen to Beta parameters

Further Understanding Beta

- Can set X ~ Beta(a, b) as prior to reflect how biased you think coin is apriori
 - This is a subjective probability!
 - Prior probability for X based on seeing (a + b − 2)
 "imaginary" trials, where
 - (a 1) of them were heads.
 - (b-1) of them were tails.
 - Beta(1, 1) = Uni(0, 1) → we haven't seen any "imaginary trials", so apriori know nothing about coin
- Update to get posterior probability
 - X | (n heads and m tails) ~ Beta(a + n, b + m)

Enchanted Die



Check out Demo!



1.0

0.3 -

0.2 -

0.0 0.0

0.2

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Damn

Beta Example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Frequentist:

$$p \approx \frac{14}{20} = 0.7$$

Beta Example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Bayesian: $X \sim \text{Beta}$

Prior:

$$X \sim \text{Beta}(a = 81, b = 21)$$

$$X \sim \text{Beta}(a=9,b=3)$$

$$X \sim \text{Beta}(a=5,b=2)$$

Interpretation:

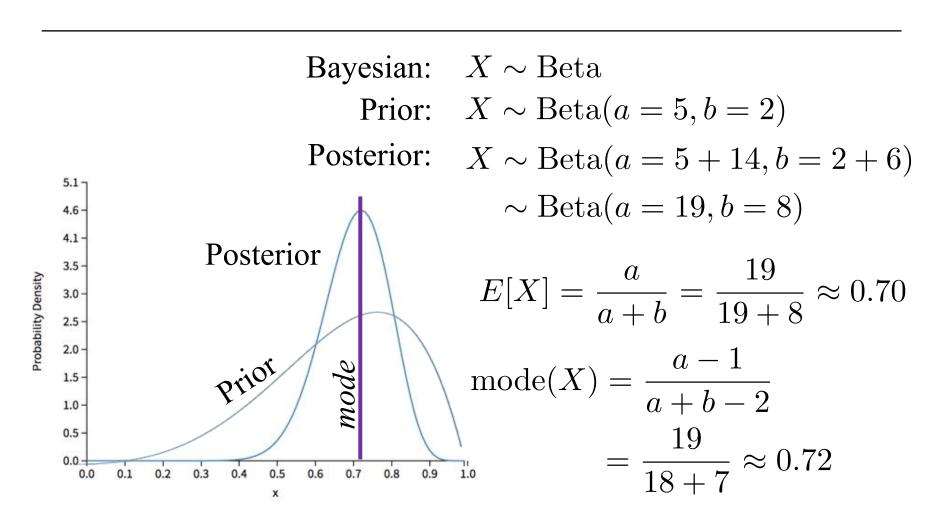
80 successes / 100 trials

8 successes / 10 trials

4 successes / 5 trials

Beta Example

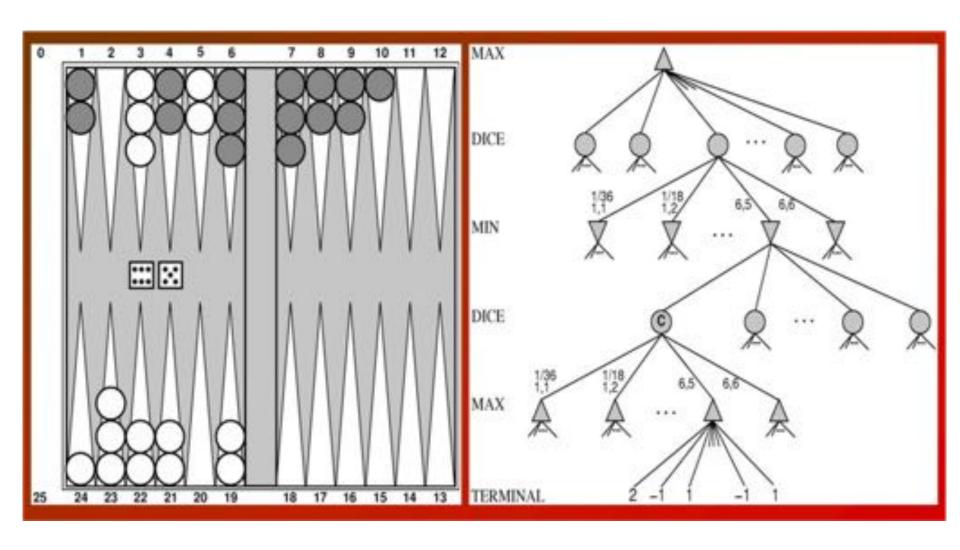
Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?



Next level?

Alpha GO mixed deep learning and core reasoning under uncertainty

Multi Armed Bandit



Multi Armed Bandit

Drug A

Drug B

Which one do you give to a patient?

Lets Play!

Drug A

Drug B

Which one do you give to a patient?

Lets Play!

```
sim.py
    import pickle
12345
    import random
    def main():
      X1, X2 = pickle.load(open('probs.pkl', 'rb'))
678
      print("Welcome to the drug simulator. There are two drugs")
9
      while True:
10
        choice = getChoice()
        prob = X1 if choice == "a" else X2
11
12
        success = bernoulli(prob)
13
        if success:
14
          print('Success. Patient lives!')
15
        else:
          print('Failure. Patient dies!')
16
17
        print('')
```

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times. If you had a uniform prior, what is your posterior belief about the likelihood of success?

2 successes 3 failures

$$X \sim \text{Beta}(a=3,b=4)$$

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times. X is the probability of success.

$$X \sim \text{Beta}(a=3,b=4)$$

What is expectation of X?

$$E[X] = \frac{a}{a+b} = \frac{3}{3+4} \approx 0.43$$

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times. X is the probability of success.

$$X \sim \text{Beta}(a=3,b=4)$$

What is the probability that X > 0.6

$$P(X > 0.6) = 1 - P(X < 0.6) = 1 - F_X(0.6)$$

Wait what? Chris are you holding out on me?

stats.beta.cdf(
$$x$$
, a , b)

$$P(X > 0.6) = 1 - F_X(0.6) = 0.1792$$

Challenge for you

Send me your strategies sometime before Friday

Beta: The probability density for probabilities

Beta is a distribution for probabilities

Beta Distribution

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

let a = num "successes" + 1

let b = num "failures" + 1

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}$$

where
$$c = \int_0^1 x^{a-1} (1-x)^{b-1}$$

Any parameter for a "parameterized" random variable can be thought of as a random variable.

Eg:
$$X \sim N(\mu, \sigma^2)$$

That's all!